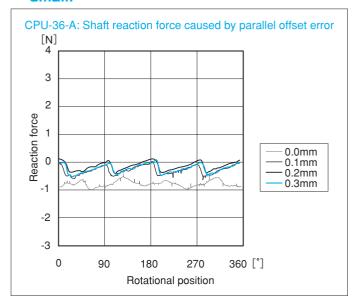


■ Frictional damping effect by frictional sliding of a pin and metal bush

■ High rigidity and minimum backlash

Each component is a rigid body and has a high rigidity. By a combination of high-precision pin and dry metal, backlash is very slight.

Extremely small shaft reaction force


Shaft reaction force caused by a mounting error is extremely small due to the universal method.

Frictional damping effect

Damping effect is generated in the sliding surface between a pin and dry metal.

Normal oper	ating torque [N	·m]	0.7 ~ 25
Bore processin	g finished product	[mm]	φ 3 ∼ 20
Operation	al temp.	[2]	$-40 \sim +100$
Backlash			Little
Max.	Parallel offset	[mm]	0.2 ~ 0.5
permissible	Angular misalignment	[°]	1 ~ 4
misalignment	Axial displacement	[mm]	Zero

■ Reaction force caused by parallel offset and angular misalignment is extremely small.

Structure and Material

CPE

Hub material: Aluminum alloy

Screw material: SCM435 Surface treatment: Black oxide

• The CPE series designed to achieve a high rigidity and low cost.

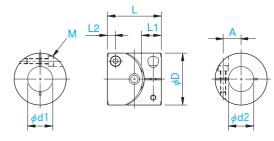
CPU

Screw material: SCM435 Surface treatment: Solid lubricant film treatment

 The CPU series designed to achieve a high torque and large permissible misalignment.

CPE

Paraflex-CPE model



Specification

	Torque		Max. permissible misalignment		Max. rotation	Torsional spring	Moment of	Mana		
Model	Normal [N·m]	Max. [N·m]	Parallel offset [mm]	Axial misalignment [°]	speed [min ⁻¹]	constant [N·m/rad]	inertia [kg·m²]	Mass [kg]	Price	
CPE-19	0.7	1.4	0.2	1	6000	500	0.69×10 ⁻⁶	0.015	_	
CPE-29	2.0	4.0	0.2	1	6000	700	5.80×10 ⁻⁶	0.050	_	
CPE-39	5.0	10.0	0.2	1	6000	1900	18.50×10⁻⁶	0.080	_	

* The indicated values in the moment of inertia and mass are measured with the maximum bore diameter.

Dimensions

Unit [mm]

Model	d1	· d2	D		1.1	L2	М	Λ	CAD
Wodel	Min.	Max.	D	_	LI	LZ	IVI	A	file No.
CPE-19	3	8	19	19.4	6.0	3.0	M2.5	6	CPE2
CPE-29	6	14	29	30.0	9.5	4.5	M3	10	CPE3
CPE-39	8	20	39	40.0	12.5	6.0	M4	14	CPE4

Adjust the length of shaft insertion to achieve the dimension L1. (Note: The shaft is impenetrable.) The recommended machining tolerance of the mate mounting shaft is h7.

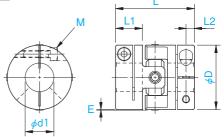
Ordering Information

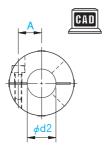
Standard bore diameter

Model		Standard bore diameter d1 · d2 [mm]															
Wiodei	3	4	5	6	6.35	7	8	9.525	10	11	12	14	15	16	18	19	20
CPE-19	0																
CPE-29											•						
CPE-39								•			•						

The permissible torque of CPE-19 with bore diameter of 3mm is limited by the shaft fixing mechanism. The normal operating torque will be 0.4[N · m], and the maximum torque will be 0.8[N · m].
 For bore diameters other than those above, processing cost is added to the standard price.

^{*} The indicated torque in CPE-19 is the values when bore diameter is over 4mm.




Specification

	Permissible torque	Max. permissib	le misalignment	Max. rotation	Torsional spring	Moment of	Mana	
Model	[N·m]	Parallel offset [mm]	Axial misalignment [°]	speed [min ⁻¹]	constant [N·m/rad]	inertia [kg·m²]	Mass [kg]	Price
CPU-26-A	2.2	0.3	4	4000	600	3.57×10 ^{−6}	0.040	_
CPU-36-A	10.0	0.4	4	3500	1350	1.64×10 ⁻⁵	0.090	_
CPU-46-A	25.0	0.5	4	3000	1650	5.33×10⁻⁵	0.190	_

^{*} The indicated values in the moment of inertia and mass are measured with the maximum bore diameter.

Dimensions

Unit [mm]

Model	d1	· d2	n	_		1.4	L2	М	Λ	CAD
Woder	Min.	Max.	D	_				IVI	Α	file No.
CPU-26-A	6	12	26	0.3	36	12	4.0	М3	9	CPU-A1
CPU-36-A	8	18	36	0.3	44	15	4.75	M4	13	CPU-A2
CPU-46-A	10	22	46	0.3	54	18	6.5	M5	16	CPU-A3

- * Adjust the length of shaft insertion to achieve the dimension L1. (Note: The shaft is impenetrable.)
- * The recommended machining tolerance of the mate mounting shaft is h7.

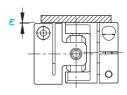
Ordering Information

CPU - 36 - A - 12 B - 12 B
Size

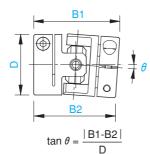
Type A: Aluminum type

d1: Bore diameter 1

■ Standard bore diameter


Model		Standard bore diameter d1 · d2 [mm]														
Wodel	6	6.35	7	8	9	9.525	10	11	12	14	15	16	18	19	20	22
CPU-26-A																
CPU-36-A																
CPU-46-A											•					

^{*} For bore diameters other than those above, processing cost is added to the standard price.


Design check items

- The CPU model allows angular misalignment up to 4°.
 However, if uniform speed is important, restrict angular misalignment to less than 1.5°. The angular speed ratio will be 1.0007 if angular misalignment is 1.5°.
- Because of its construction, the CPE and CPU models cannot absorb axial displacement. Make sure that couplings do not receive axial displacement.
- Check centering of the CPE and CPU models by the method shown on the right and adjust centering to satisfy the tolerances.

Parallel offset

Angular misalignment

Instruction for use

■Mounting

- Loosen the clamping bolts of the coupling.
- 2 Confirm that no rust or oil is attached on the mate mounting shaft. If there is any, wife off completely.
- **3** After inserting the mate mounting shaft into the coupling, tighten the clamping bolts using a torque wrench.

Tightening torque list

Size	CPE	19	29	39	_
Size	CPU	_	26	36	46
Tightening torque	[N·m]	1.0	1.5	3.4	7.0
Clamping bolt M		M2.5	M3	M4	M5

Selection

■Selection procedure

• Calculate torque Ta applied to the coupling based on the motor output P and coupling operating rotation speed n.

 $Ta[N \cdot m] = 9550 \times \frac{P[kW]}{n[min^{-1}]}$

2 Calculate corrected torque Td applied to the coupling after deciding the service factor K based on operating conditions.

Td=Ta×K (See next item)

3 Select the size in order that the coupling permissible torque Tn becomes greater than the corrected torque Td.

Tn≧Td

Service Factor

K=K1 · K2 · K3 · K4 · K5

Operating coefficient by load character: K1

	Load character									
Constant	Fluctuations: small	Fluctuations: medium	Fluctuations: large							
		Jun	M//							
1.0	1.25	1.75	2.25							

● Parallel offset coefficient: K2

Parallel offset [mm]	0	0.1	0.2
K2	1.0	1.1	1.2

Angular misalignment coefficient: K3

Angular misalignment [°]	0	0.5	1.0
К3	1.0	1.06	1.12

Ambient temperature coefficient: K4

Ambient temp. [℃]	60 or less	80 or less	100 or less
K4	1.0	1.4	1.8

●Rotation speed coefficient: K5

Rotation speed [min ⁻¹]	1500 or less	2000 or less	2500 or less	3000 or less	3500 or less	4000 or less	5000 or less	6000 or less
K5	1.0	1.3	1.7	2.0	2.4	2.7	3.3	4.0